
PIC18FXX39
DS30485A-page 176
Preliminary
2002 Microchip Technology Inc.
17.3
USART Synchronous Master
Mode
In Synchronous Master mode, the data is transmitted in
a half-duplex manner (i.e., transmission and reception
do not occur at the same time). When transmitting data,
the reception is inhibited and vice versa. Synchronous
mode is entered by setting bit SYNC (TXSTA<4>). In
addition, enable bit SPEN (RCSTA<7>) is set in order
to configure the RC6/TX/CK and RC7/RX/DT I/O pins
to CK (clock) and DT (data) lines, respectively. The
Master mode indicates that the processor transmits the
master clock on the CK line. The Master mode is
entered by setting bit CSRC (TXSTA<7>).
17.3.1
USART SYNCHRONOUS MASTER
TRANSMISSION
The USART transmitter block diagram is shown in
(serial) Shift Register (TSR). The shift register obtains
its data from the read/write transmit buffer register
TXREG. The TXREG register is loaded with data in
software. The TSR register is not loaded until the last
bit has been transmitted from the previous load. As
soon as the last bit is transmitted, the TSR is loaded
with new data from the TXREG (if available). Once the
TXREG register transfers the data to the TSR register
(occurs in one TCYCLE), the TXREG is empty and inter-
rupt bit TXIF (PIR1<4>) is set. The interrupt can be
enabled/disabled by setting/clearing enable bit TXIE
(PIE1<4>). Flag bit TXIF will be set, regardless of the
state of enable bit TXIE, and cannot be cleared in soft-
ware. It will reset only when new data is loaded into the
TXREG register. While flag bit TXIF indicates the status
of the TXREG register, another bit TRMT (TXSTA<1>)
shows the status of the TSR register. TRMT is a read
only bit, which is set when the TSR is empty. No inter-
rupt logic is tied to this bit, so the user has to poll this
bit in order to determine if the TSR register is empty.
The TSR is not mapped in data memory, so it is not
available to the user.
To set up a Synchronous Master Transmission:
1.
Initialize the SPBRG register for the appropriate
2.
Enable the synchronous master serial port by
setting bits SYNC, SPEN, and CSRC.
3.
If interrupts are desired, set enable bit TXIE.
4.
If 9-bit transmission is desired, set bit TX9.
5.
Enable the transmission by setting bit TXEN.
6.
If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.
7.
Start transmission by loading data to the TXREG
register.
TABLE 17-8:
REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION
Note:
TXIF is not cleared immediately upon load-
ing data into the transmit buffer TXREG.
The flag bit becomes valid in the second
instruction
cycle
following
the
load
instruction.
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on
POR, BOR
Value on
All Other
RESETS
INTCON
GIE/
GIEH
PEIE/
GIEL
TMR0IE INT0IE
RBIE
TMR0IF
INT0IF
RBIF
0000 000x
0000 000u
PIR1
PSPIF(1)
ADIF
RCIF
TXIF
SSPIF
—
TMR2IF TMR1IF 0000 0000 0000 0000
PIE1
PSPIE(1)
ADIE
RCIE
TXIE
SSPIE
—
TMR2IE TMR1IE 0000 0000 0000 0000
IPR1
PSPIP(1)
ADIP
RCIP
TXIP
SSPIP
—
TMR2IP TMR1IP 0000 0000 0000 0000
RCSTA
SPEN
RX9
SREN
CREN ADDEN
FERR
OERR
RX9D
0000 -00x
TXREG USART Transmit Register
0000 0000
TXSTA
CSRC
TX9
TXEN
SYNC
—
BRGH
TRMT
TX9D
0000 -010
SPBRG Baud Rate Generator Register
0000 0000
Legend: x = unknown, - = unimplemented, read as '0'.
Shaded cells are not used for Synchronous Master Transmission.
Note 1: The PSPIF, PSPIE and PSPIP bits are reserved on the PIC18F2X39 devices; always maintain these bits
clear.